1.由于工程問題解題中遇到的不是具體數(shù)量,與學生的習慣性思維相逆,同學們往往感到很抽象,不易理解。
2.比較難的工程問題,其數(shù)量關系一般很隱蔽,工作過程也較為復雜,往往會出現(xiàn)多人多次參與工作的情況,數(shù)量關系難以梳理清晰。
3.一些較復雜的分數(shù)應用題、流水問題、工資分配、周期問題等,其實質也是工程問題,但同學們易受其表面特征所迷惑,難以清晰分析、理解其本質結構特征是工程問題,從而未按工程問題思路解答,誤入歧途。
工程問題是從分率的角度研究工作總量、工作時間和工作效率三個量之間的關系,它們有如下關系:工作效率×工作時間=工作總量;工作總量÷工作效率=工作時間;工作總量÷工作時間=工作效率。那我們應該怎樣分析工程問題呢?
1.深刻理解、正確分析相關概念。
對于工程問題,要深刻理解工作總量、工作時間、工作效率,簡稱工總、工時、工效。通常工作總量的具體數(shù)值是無關緊要的,一般利用它不變的特點,把它看作單位“1”;工作時間是指完成工作總量所需的時間;工作效率是指單位時間內完成的工作量,即用單位時間內完成工作總量的幾分之一或幾分之幾來表示工作效率。
分析工程問題數(shù)量關系時,運用畫示意圖、線段圖等方法,正確分析、弄請題目中哪個量是工作總量、工作時間和工作效率。
2.抓住基本數(shù)量關系。
解題時,要抓住工程問題的基本數(shù)量關系:工作總量=工作效率×工作時間,靈活地運用這一數(shù)量關系提高解題能力。這是解工程問題的核心數(shù)量關系。
3.以工作效率為突破口。
工作效率是解答工程問題的要點,解題時往往要求出一個人一天(或一個小時)的工作量,即工作效率(修路的長度、加工的零件數(shù)等)。如果能直接求出工作效率,再解答其他問題就較容易,如果不能直接求出工作效率,就要仔細分析單獨或合作的情況,想方設法求出單獨做的工作效率或合作的工作效率。
工程問題中常出現(xiàn)單獨做、幾人合作或輪流做的情況,分析時要梳理、理順工作過程,抓住完成工作的幾個過程或幾種變化,通過對應工作的每一階段的工作量、工作時間來確定單獨做或合作的工作效率。也常常將問題轉化為由甲(或乙)完成全部工程(工作)的情況,使問題得到解決
要抓住題目中總的工作時間比、工作效率比、工作量比,及抓住隱蔽的條件來確定工作效率,或者確定工作效率之間的關系。
總之,單獨的工作效率或合作的工作效率是解答工程問題的關鍵?! ?/p>
【例1】一件工作,甲單獨做12小時完成,乙單獨做9小時可以完成。如果按照甲先乙后的順序,每人每次1小時輪流進行,完成這件工作需要幾小時?
【解析】設這件工作為“1”,則甲、乙的工作效率分別是1/12和1/9。按照甲先乙后的順序,每人每次1小時輪流進行,甲、乙各工作1小時,完成這件工作的7/36,甲、乙這樣輪流進行了5次,即10小時后,完成了工作的35/36,還剩下這件工作的1/36,剩下的工作由甲來完成,還需要1/3小時,因此完成這件工作需要31/3小時。
【例2】一份稿件,甲、乙、丙三人單獨打各需20、24、30小時?,F(xiàn)在三人合打,但甲因中途另有任務提前撤出,結果用12小時全部完成。那么,甲只打了幾小時?
【解析】設打這份稿件的總工作量是“1”,則甲、乙、丙三人的工作效率分別1/20、1/24和1/30。在甲中途撤出前后,其實乙、丙二人始終在打這份稿件,乙、丙12小時打了這份稿件的9/10,還剩下稿件的1/10,這就是甲打的。所以,甲只打了2小時。
【例3】 一件工程,甲、乙合作6天可以完成?,F(xiàn)在甲、乙合作2天后,余下的工程由乙獨做又用8天正好 做完。這件工程如果由甲單獨做,需要幾天完成?
【解析】甲、乙合作2天,甲2乙2,剩下應該是甲4乙4=乙8.則甲=乙,所以甲單獨完成需要12天。
【例4 】一個游泳池,甲管放滿水需6小時,甲、乙兩管同時放水,放滿需4小時。如果只用乙管放水,則放滿需:
A 8小時 B 10小時 C 12小時 D 14小時 (2001年A類真題)
【解析】:設游泳池放滿水的工作量為1,甲管放滿水需6小時,則甲每小時完成工作量的1/6甲、乙兩管同時放水,放滿需4小時,則甲乙共同注水,每小時可注游泳池的1/4,則乙每小時注水的量為1/4-1/6=1/12,則如果只用乙管放水,則放滿需12小時。
另法:甲乙同時放水需要4小時=甲4乙4=甲6 則乙=0.5甲,需要12小時。
【例5】 一個水池有兩個排水管甲和乙,一個進水管丙.若同時開放甲、丙兩管,20小時可將滿池水排空;若同時開放乙、丙兩水管,30小時可將滿池水排空,若單獨開丙管,60小時可將空池注滿.若同時打開甲、乙、丙三水管,要排空水池中的滿池水,需幾小時?
【解析】工程問題最好采用方程法。
由題可設甲X小時排空池水,乙Y小時排空池水,則可列方程組
1/X-1/60=1/20 解得X=15
1/Y-1/60=1/30 解得Y=20
則三個水管全部打開,則需要1÷(1/15+1/20-1/60)=10
所以,同時開啟甲、乙、丙三水管將滿池水排空需10小時。
【例6】 鋪設一條自來水管道,甲隊單獨鋪設8天可以完成,而乙隊每天可鋪設50米。如果甲、乙兩隊同時鋪設,4天可以完成全長的2/3,這條管道全長是多少米?
A 1000米 B 1100米 C 1200米 D 1300米 (2002年B類真題)
【解析】設乙需要X天完成這項工程,依題意可列方程
?。?/8+1/X)×4=2/3
解得X=24
也即乙每天可完成總工程的1/24,也即50米,所以管道總長為1200米。
所以,正確答案為C。
另法:甲4天完成1/2,乙4天完成200米=1/6,全長1200米。
【例7】一項工程甲乙丙合作5天完成,現(xiàn)在三人合作2天后,甲調走,乙丙繼續(xù)合作5天后完工,問甲一人獨做需幾天完工?
【解析】三人合作2天完成2/5,剩余3/5需要乙丙5天,效率為3/25,則甲的效率為1/5-3/25=2/25,所以甲單獨做需要12.5天。
【例8】制作一批零件,甲車間要10天完成;茹果甲車間和乙車間一起做只要6天就能完成,乙車間和丙車間一起做需要8天。現(xiàn)在三個車間一起做,完成后發(fā)現(xiàn)甲比乙多做2400個。丙制作零件多少個?
【解析】效率比 甲:乙=3:2,則乙單獨需要15天,則乙:丙=8:7,則甲:乙:丙=12:8:7,假設丙做了7X個,則甲比乙多做4X=2400,7X=4200個。
【例9】蓄水池有甲丙兩條進水管和乙丁兩臺排水管。要注滿一池水,單開甲管要3小時,單開丙管要5小時。要排光一池水,單開乙管要4小時,單開丁管要6小時?,F(xiàn)知池內有1/6池水,如果按甲乙丙丁、甲乙丙丁……的順序輪流各開一小時,問多少時間后,水開始溢出水池?
【解析】甲乙丙丁四條水管各開一個小時以后,也就是一個輪回,水池的水量是:
?。?/3+1/5)-(1/4+1/6)=7/60;
當N個輪回結束,水池水量超過2/3時候,再單獨開甲就要有水溢出。
1/6+N*7/60=2/3 解得N=4.。。2,取N=5
1-1/6-5*7/60=1/4 需要3/4小時。則總時間為4*5+3/4=20又3/4
行測更多復習技巧可參考《2012年國家公務員考試一本通》。